Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Int J Pharm ; 657: 124189, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701906

RESUMO

Amorphous solid dispersions (ASDs) represent an important approach for enhancing oral bioavailability for poorly water soluble compounds; however, assuring that these ASDs do not recrystallize to a significant extent during storage can be time-consuming. Therefore, various efforts have been undertaken to predict ASD crystallization levels with kinetic models. However, only limited success has been achieved due to limits on crystal content quantification methods and the complexity of crystallization kinetics. To increase the prediction accuracy, the accelerated stability assessment program (ASAP), employing isoconversion (time to hit a specification limit) and a modified Arrhenius approach, are employed here for predictive shelf-life modeling. In the current study, a model ASD was prepared by spray drying griseofulvin and HPMC-AS-LF. This ASD was stressed under a designed combinations of temperature, relative humidity and time with the conditions set to ensure stressing was carried out below the glass transition temperature (Tg) of the ASD. Crystal content quantification method by X-ray powder diffraction (XRPD) with sufficient sensitivity was developed and employed for stressed ASD. Crystallization modeling of the griseofulvin ASD using ASAPprime® demonstrated good agreement with long-term (40 °C/75 %RH) crystallinity levels and support the use of this type of accelerated stability studies for further improving ASD shelf-life prediction accuracy.

2.
Environ Res ; 247: 118275, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38246295

RESUMO

The study investigated the dissipation ability of a vegetated free water surface (FWS) constructed wetland (CW) in treating pesticides-contaminated agricultural runoff/drainage water in a rural area belonging to Bologna province (Italy). The experiment simulated a 0.1% pesticide agricultural water runoff/drainage event from a 12.5-ha farm by dissolving acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine in 1000 L of water and pumping it into the CW. Water and sediment samples from the CW were collected for 4 months at different time intervals to determine pesticide concentrations by multiresidue extraction and chromatography-mass spectrometry analyses. In parallel, no active compounds were detected in the CW sediments during the experimental period. Pesticides dissipation in the wetland water compartment was modeled according to best data practices by fitting the data to Single First Order (SFO), First Order Multi-Compartment (FOMC) and Double First Order in Parallel (DFOP) kinetic models. SFO (except for metalaxyl), FOMC and DFOP kinetic models adequately predicted the dissipation for the four investigated molecules, with the DFOP kinetic model that better fitted the observed data. The modeled distribution of each pesticide between biomass and water in the CW highly correlated with environmental indexes as Kow and bioconcentration factor. Computed DT50 by DFOP model were 2.169, 8.019, 1.551 and 2.047 days for acetamiprid, metalaxyl, S-metolachlor, and terbuthylazine, respectively. Although the exact degradation mechanisms of each pesticide require further study, the FWS CW was found to be effective in treating pesticides-contaminated agricultural runoff/drainage water within an acceptable time. Therefore, this technology proved to be a valuable tool for mitigating pesticides runoff occurring after intense rain events.


Assuntos
Acetamidas , Alanina/análogos & derivados , Neonicotinoides , Praguicidas , Triazinas , Poluentes Químicos da Água , Áreas Alagadas , Praguicidas/análise , Agricultura/métodos , Água , Poluentes Químicos da Água/análise
3.
Bioresour Technol ; 387: 129645, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37558105

RESUMO

Biochar, a cost-effective adsorbent for the removal of heavy metals from aqueous solutions, has gained increasing attention. In this study, an advanced micro-computed tomography (micro-CT) system was used to investigate the adsorption kinetics by direct localization and visualization of Pb (II) on wheat straw pellet biochar. The normalized digital images indicating the dynamic changes of Pb (II) adsorption on biochar samples at different initial Pb (II) concentrations of 100, 200, 300, and 400 mg/L and adsorption times were obtained. It was found that image grayscale (GS) changes over adsorption time (t) followed the power function, GSe/GSt=2.45∗t-0.27. Based on this finding, modified pseudo-first-order (PFO) and pseudo-second-order (PSO) models incorporated with time-dependent kinetic constants kPFOt=KPFO∗GSe/GSt and kPSOt=KPSO∗GSe/GSt were proposed, resulting in a better interpretation of the adsorption mechanism. The micro-CT-guided novel approach demonstrated visual evidence-based superiority and should prove valuable to the existing body of research in related fields.


Assuntos
Chumbo , Poluentes Químicos da Água , Microtomografia por Raio-X , Adsorção , Cinética , Carvão Vegetal , Poluentes Químicos da Água/análise
4.
Polymers (Basel) ; 15(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37514442

RESUMO

Thermo-chemical conversion via the pyrolysis of cigarette butt (CB) filters was successfully valorized and upcycled in the pre-carbonization and carbonization stages. The pre-carbonization stage (devolatilization) of the precursor material (cellulose acetate filter, r-CAcF) was analyzed by micro-scale experiments under non-isothermal conditions using TG-DTG-DTA and DSC techniques. The results of a detailed kinetic study showed that the decomposition of r-CAcF takes place via complex mechanisms, including consecutive reaction steps and two single-step reactions. Consecutive stages include the α-transition referred to as a cellulose polymorphic transformation (cellulose I → II) through crystallization mechanism changes, where a more thermodynamically ordered system was obtained. It was found that the transformation rate of cellulose I → II ('cellulose regeneration') is strongly affected by the presence of alkali metals and the deacetylation process. Two single-step reactions showed significant overlapping behavior, which involves a nucleation-controlled scission mechanism (producing levoglucosan, gaseous products, and abundant radicals) and hydrolytic decomposition of cellulose by catalytic cleavage of glycosidic bonds with the presence of an acidic catalyst. A macro-scale experiment showed that the operating temperature and heating rate had the most notable effects on the total surface area of the manufactured carbon. A substantial degree of mesoporosity with a median pore radius of 3.1695 nm was identified. The presence of macroporosity on the carbon surface and acidic surface functional groups was observed.

5.
ArXiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461420

RESUMO

Microalgae are key players in the global carbon cycle and emerging producers of biofuels. Algal growth is critically regulated by its complex microenvironment, including nitrogen and phosphorous levels, light intensity, and temperature. Mechanistic understanding of algal growth is important for maintaining a balanced ecosystem at a time of climate change and population expansion, as well as providing essential formulations for optimizing biofuel production. Current mathematical models for algal growth in complex environmental conditions are still in their infancy, due in part to the lack of experimental tools necessary to generate data amenable to theoretical modeling. Here, we present a high throughput microfluidic platform that allows for algal growth with precise control over light intensity and nutrient gradients, while also performing real-time microscopic imaging. We propose a general mathematical model that describes algal growth under multiple physical and chemical environments, which we have validated experimentally. We showed that light and nitrogen colimited the growth of the model alga Chlamydomonas reinhardtii following a multiplicative Monod kinetic model. The microfluidic platform presented here can be easily adapted to studies of other photosynthetic micro-organisms, and the algal growth model will be essential for future bioreactor designs and ecological predictions.

6.
J Sci Food Agric ; 103(4): 1651-1659, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326592

RESUMO

BACKGROUND: Plant-based foods are frequently heterogenous systems, containing multiple starch fractions with distinct digestion rate constants. An unbiased determination of the number and digestion pattern of these fractions is a prerequisite for understanding the digestive characteristics of food. RESULTS: A non-linear least-squares procedure based on a conditional selection of simple first-order kinetics or a combination of parallel and sequential kinetics models was developed. The procedure gave robust results fitting manually generated data, and was applied to in vitro experimental digestion data of retrograded rice starches. By correlating fitting parameters with starch structural parameters, it showed that rice starches with a lower amylose content, longer amylose chains, and amylopectin intermediate chains had more digestible starch fractions after long-term retrogradation. CONCLUSION: This procedure enables the structural basis of starch digestibility and the development of food products with slow starch digestibility to be better understood. © 2022 Society of Chemical Industry.


Assuntos
Amilose , Oryza , Amilose/química , Digestão , Amido/química , Amilopectina/química , Suplementos Nutricionais , Oryza/química
7.
Environ Sci Pollut Res Int ; 30(6): 15198-15216, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36166126

RESUMO

The existence of toxic heavy metals in the aquatic environment has emphasized a considerable exigency to develop several multifunctional biosorbents for their removal. Herein, three individual bacterial species of Cellulosimicrobium cellulans, Bacillus coagulans, and Microbacterium testaceum were successfully isolated from low-level liquid radioactive wastes. Their loading capacities towards cerium and cobalt metal ions were inclusivity inspected under variable operational parameters of pH, primary pollutant concentration, interaction time, temperature, stirring speed, and biosorbent dosage. By analyzing the influence of solution pH, concentration, temperature, biosorbent mass, and agitation speed on the biosorption kinetics, the biosorption process confirms pseudo-second-order kinetic, intraparticle diffusion, and Elovich equation. Remarkably, the isolated Microbacterium testaceum exhibited high loading capacities reaching 68.1 mg g-1, and 49.6 mg g-1 towards Ce(III), and Co(II) ions, respectively, at the initial concentration of 2.8 mM, pH 4.5, and 25 °C. Overall, the isolated bacterial species can potentially be offered up as a promising scavenger for Ce(III) and Co(II) from liquid waste effluents.


Assuntos
Cério , Resíduos Radioativos , Poluentes Químicos da Água , Cobalto , Cinética , Íons , Adsorção , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Biomassa
8.
Foods ; 11(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36553787

RESUMO

Stepwise drying is an effective technique that promotes energy saving without additional capital cost. The stepwise drying mode was investigated for energy consumption and dried product qualities using a coupled heat and mass transfer model associated with kinetics equations of volume shrinkage and degradation of ß-carotene in carrot cubes. Simulations were performed using a finite element method with extension of a chemical species transport. Validation experiments were carried out under constant drying modes at 60 °C, 70 °C and 80 °C using a lab-scale convective hot air dryer. The verified models were subsequently employed to investigate the effects of two step-up drying modes (60 to 70 °C and 60 to -80 °C). The optimal drying condition was determined using the synthetic evaluation index (SI) with criteria of high specific moisture evaporation rate (SMER), low shrinkage ratio and ß-carotene degradation. Simulated results showed comparable agreement with experimental data of moisture content, shrinkage ratio and ß-carotene ratio. Step-up drying of 60 to 70 °C gave the highest SMER of 0.50 × 10-3 kg of water evaporated per kWh, while the operation at constant temperature of 80 °C gave the lowest value of 0.19 × 10-3 kg of water evaporated per kWh. Model-predicted results showed less shrinkage of carrot cubes, but higher degradation of ß-carotene under step-up drying compared to single-stage drying under temperature of 60 °C. Based on the highest SI value (0.36), carrot cubes were optimally dried under step-up mode of 60 to 70 °C.

9.
J Oleo Sci ; 71(12): 1799-1811, 2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36336344

RESUMO

In this study, tigernut oil was extracted from tigernut meal by subcritical n-butane extraction with the assistance of microwave pretreatment. Effects of microwave pulse duration, particle size of tigernut meal, and subcritical extraction variables (temperature, time, solid-liquid ratio, number of extraction cycles) on extraction efficiency were examined by single-factor experiments and Response Surface Methodology (RSM) modeling. The results indicate that microwaving (560 W, 6 min) significantly increased the subcritical extraction efficiency. The variation of extraction yield could be interpreted as a nonlinear function of extraction time, temperature and liquid-solid ratio. Changing the independent variables could affect the oil extraction efficiency. The subcritical extraction of tigernut oil with a liquid-solid ratio of 3.62 kg/(kg of tigernut meal) at a temperature of 52°C for 32 min after three extraction cycles produced the most oil, and a maximum yield (24.736%) of tigernut oil was achieved. The ratio of unsaturated to saturated fatty acids (4.68 UFA/SFA), low acid value (3.30 mg KOH/g oil), low peroxide value (0.28 meq.kg-1), and preponderance of oleic acid indicate a high-quality oil. To describe the extraction kinetics, a modified Brunner's mathematical model was used. The model fit the experimental data well over the entire operating range, and the explanation coefficient exceeds 96%. Our results can be used to develop an optimized method for subcritical fluid extraction of tigernut oil and can move industry further toward implementing microwave-assisted subcritical extraction in oil processing.


Assuntos
Micro-Ondas , Óleos de Plantas , Cinética , Butanos
10.
J Hazard Mater ; 437: 129369, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35897182

RESUMO

Antibiotics in human urine could accelerate dissemination of antibiotics resistance genes (ARGs), posing potential threat to sewage. The nitritation of source-separated urine was a critical step to realize the urine resourcelization and nitrogen stabilization. However, the synergic control on antibiotics and ARGs during urine nitritation was unrevealed. This study investigated the removal profiles of five typical antibiotics and the shifts of microbial community and ARGs during stable nitritation. The result showed that sulfamethoxazole and roxithromycin were effectively eliminated with high removal efficiency of (95 ± 5) % and (90 ± 10) %, followed by enrofloxacin with removal efficiency of (60 ± 5) %, whereas trimethoprim and chloramphenicol showed low removal efficiency of less than 40 %. Ammonia oxidation bacteria and heterotrophic bacteria equally contributed to elimination of sulfamethoxazole with a high biodegradation rate of 0.1534 L/gVSS·h, while sorption and biodegradation jointly promoted other antibiotics removal. The total relative abundance of top 25 bacteria genera was decreased by 10 %. The total relative abundance of top 30 ARGs was decreased by more than 20 %, which was corresponding to the variation of bacterial community. The findings in this research would get a deeper insight into the eliminating antibiotics and controlling ARGs dissemination during nitritation of source-separated urine.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Genes Bacterianos , Esgotos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana/genética , Humanos , Esgotos/microbiologia , Sulfametoxazol , Trimetoprima , Águas Residuárias/microbiologia
11.
J Pharmacokinet Pharmacodyn ; 49(5): 525-538, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35869348

RESUMO

Chimeric antigen receptor (CAR) T cell therapies have revolutionized the treatment of hematologic malignancies and have potentials for solid tumor treatment. To overcome limited CAR T cell infiltration to solid tumors, local delivery of CAR T cells is a practical strategy that has shown promising therapeutic outcome and safety profile in the clinic. It is of great interest to understand the impact of dosing routes on CAR T cell distribution, subsequent proliferation and tumor killing in a quantitative manner to identify key factors that contribute to CAR T efficacy and safety. In this study, we established mouse minimal physiologically-based pharmacokinetic (mPBPK) models combined with pharmacodynamic (PD) components to delineate CAR T cell distribution, proliferation, tumor growth, and tumor cell killing in the cases of pleural and liver tumors. The pleural tumor model reasonably captured published CAR T cellular kinetic and tumor growth profiles in mice. The mPBPK-PD simulation of a liver tumor mouse model showed a substantial increase in initial tumor infiltration and earlier CAR T cell proliferation with local hepatic artery delivery compared to portal vein and intravenous (i.v.) injections whereas portal vein injection showed little difference from i.v. administration, suggesting the importance of having the injection site close to tumor for maximal effect of non-systemic administration. Blood flow rate in the liver tumor was found to be a sensitive parameter for cellular kinetics and efficacy, indicating a potential role of tumor vascularization in the efficacy of CAR T cell therapies.


Assuntos
Neoplasias Hepáticas , Receptores de Antígenos Quiméricos , Animais , Proliferação de Células , Modelos Animais de Doenças , Imunoterapia Adotiva , Camundongos , Linfócitos T
12.
J Food Sci ; 87(9): 3797-3808, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35904154

RESUMO

The purpose of this study was to discuss the effects of cutting methods (transverse cutting [TC] and longitudinal cutting [LC]) and drying methods (vacuum freeze-drying [FD], hot air drying [HD], catalytic infrared drying [CID]) on rehydration kinetics and physical and chemical characteristics of rehydrated ginger. The research results showed that the rehydration rate and equilibrium moisture content increased with an increase in temperature. LC samples had a higher rehydration rate, while TC samples showed higher equilibrium moisture. Peleg model can fit the rehydration curve of the sample well. The highest coefficient of determination (R2 ) was 0.99, while the sum of squares error and lowest chi-square (χ2 ) was close to zero. Compared with fresh samples, the rehydrated ginger slices had lower gingerol content, total phenol content (TPC), total flavonoid content (TFC), and higher antioxidant activity. The different cutting methods had no significant effect on the physical and chemical properties of rehydrated ginger. In conclusion, TC-CID rehydrated products have better retention of gingerol, TPC, TFC, and antioxidant properties, which was similar to the principal component analysis. PRACTICAL APPLICATION: The results of this study show that transverse cutting combined with catalytic infrared drying is a unique processing technology. Due to the short xylem of transverse cutting ginger, the xylem diameter can be restored during rehydration, the balanced water content was high, and the quality of dried ginger can be restored to the greatest extent. This makes food processors competitive in the operation process and provides better services to consumers.


Assuntos
Zingiber officinale , Antioxidantes/análise , Catecóis , Dessecação/métodos , Álcoois Graxos , Flavonoides/análise , Hidratação , Congelamento , Zingiber officinale/química , Fenóis/química , Água
13.
Food Microbiol ; 106: 104054, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35690447

RESUMO

Human pathogens can develop biofilm structures on different artificial substrates common in the food industry. In this study, we investigated the inactivation efficacy of low-energy X-ray irradiation on Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes biofilms on food contact surfaces, including polyvinyl chloride (PVC), stainless steel with finish 2B (STS 2B), and Teflon. The numbers of viable cells in biofilms on all test coupons were significantly (p < 0.05) reduced as the X-ray dose increased. Interestingly, different biofilm inactivation levels were observed relative to various material surfaces. Teflon showed the lowest D5d (dose required for a 5-log reduction in cell count) values among three groups of coupons, whereas PVC exhibited higher D5d values than the other two coupons. The mechanism of the X-ray antibiofilm effect was identified through the measurement of extracellular polymeric substances (EPS) in biofilms. X-ray irradiation could remove exopolysaccharides, which are major component of EPS and the removal rate increased with increasing irradiation dose. The analyses also confirmed that the disintegration of EPS was strongly related to the trends of biofilm inactivation on different coupon surfaces. This study is the first to demonstrate that X-ray irradiation effectively inactivates major foodborne pathogen biofilms on various food contact surfaces and to evaluate its antibiofilm mechanisms to enhance safety in the food processing industries.


Assuntos
Microbiologia de Alimentos , Listeria monocytogenes , Biofilmes , Contagem de Colônia Microbiana , Humanos , Politetrafluoretileno/farmacologia , Cloreto de Polivinila/farmacologia , Aço Inoxidável , Raios X
14.
Sci Total Environ ; 837: 155804, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35561929

RESUMO

Thermal digestion has emerged as a novel technique for the rapid treatment of solid organic waste (SOW). Dehydration mechanism and fate of nutrients during the thermal digestion of the SOW were explored. A series of experiments were carried out in a specially designed laboratory-scale dehydrator to determine its drying kinetics. The statistical analysis revealed that the diffusion model predicted the dehydration profile most accurately than other models. The effective moisture diffusivity coefficient depended on the temperature and varied from 2.81 × 10-08 m2/s to 8.68 × 10-08 m2/s at the tested temperature range. The activation energy required for complete dehydration was found to be 26.56 kJ/mol. The artificial neural network (ANN) model was found highly efficient (R2 - 0.983) in predicting the total drying time required for attaining equilibrium moisture content. The total N decreased from 2.2% to 1.81% due to evaporation of ammonical nitrogen, while the availability of P and K was increased from 0.38% to 0.43% and 1.47% to 1.75%, respectively when the temperature was increased from 110 °C to 170 °C. The thermal dehydration technique was found effective in digesting the organics and improving the bioavailability of the nutrients, which favours for its re-utilization in agriculture.


Assuntos
Desidratação , Resíduos Sólidos , Digestão , Humanos , Cinética , Nutrientes
15.
FEBS J ; 289(19): 6021-6037, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35429225

RESUMO

Under carbon source transitions, the intracellular pH of Saccharomyces cerevisiae is subject to change. Dynamics in pH modulate the activity of the glycolytic enzymes, resulting in a change in glycolytic flux and ultimately cell growth. To understand how pH affects the global behavior of glycolysis and ethanol fermentation, we measured the activity of the glycolytic and fermentative enzymes in S. cerevisiae under in vivo-like conditions at different pH. We demonstrate that glycolytic enzymes exhibit differential pH dependencies, and optima, in the pH range observed during carbon source transitions. The forward reaction of GAPDH shows the highest decrease in activity, 83%, during a simulated feast/famine regime upon glucose removal (cytosolic pH drop from 7.1 to 6.4). We complement our biochemical characterization of the glycolytic enzymes by fitting the Vmax to the progression curves of product formation or decay over time. The fitting analysis shows that the observed changes in enzyme activities require changes in Vmax , but changes in Km cannot be excluded. Our study highlights the relevance of pH as a key player in metabolic regulation and provides a large set of quantitative data that can be explored to improve our understanding of metabolism in dynamic environments.


Assuntos
Glicólise , Saccharomyces cerevisiae , Carbono/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Saccharomyces cerevisiae/metabolismo
16.
Plants (Basel) ; 11(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406925

RESUMO

Steam distillation was used for the isolation of Dracocephalum moldavica L. (Moldavian dragonhead) essential oil (DMEO). This aromatic herbaceous plant is widespread across the Northern Hemisphere regions and has been utilized in health-improving studies and applications. In addition to the DMEO, the hydrolate (DMH), a byproduct of the distillation process, was also collected. The DMEO and DMH were analyzed and compared in terms of their chemical composition, as well as their in vitro biological activities. The main component in DMEO was geranyl acetate, while geranial was dominant in DMH. The DMEO demonstrated better antioxidant and antimicrobial activities compared with the DMH against Staphylococcus aureus, Escherichia coli, Salmonella Typhimurium, and Listeria monocytogenes, which represent sources of food-borne illness at the global level. The DMEO and DMH show promise as antioxidant and antimicrobial additives to various products.

17.
Pharmaceutics ; 14(3)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35336011

RESUMO

Polymeric nanoparticles' drug delivery systems represent a promising platform for targeted controlled release since they are capable of improving the bioavailability and tissue localization of drugs compared to traditional means of administration. Investigation of key parameters of nanoparticle preparation and their impact on performance, such as size, drug loading, and sustained release, is critical to understanding the synthesis parameters surrounding a given nanoparticle formulation. This comprehensive and systematic study reports for the first time and focuses on the development and characterization of formoterol polymeric nanoparticles that have potential application in a variety of acute and chronic diseases. Nanoparticles were prepared by a variety of solvent emulsion methods with varying modifications to the polymer and emulsion system with the aim of increasing drug loading and tuning particle size for renal localization and drug delivery. Maximal drug loading was achieved by amine modification of polyethylene glycol (PEG) conjugated to the poly(lactic-co-glycolic acid) (PLGA) backbone. The resulting formoterol PEGylated PLGA polymeric nanoparticles were successfully lyophilized without compromising size distribution by using either sucrose or trehalose as cryoprotectants. The physicochemical characteristics of the nanoparticles were examined comprehensively, including surface morphology, solid-state transitions, crystallinity, and residual water content. In vitro formoterol drug release characteristics from the PEGylated PLGA polymeric nanoparticles were also investigated as a function of both polymer and emulsion parameter selection, and release kinetics modeling was successfully applied.

18.
Environ Sci Technol ; 56(7): 4377-4385, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35319191

RESUMO

The efficacy of oxidation of recalcitrant organic contaminants in municipal and industrial wastewaters by ozonation is influenced by chemical reaction kinetics and hydrodynamics within a reactor. A 3D computational fluid dynamics (CFD) model incorporating both multiphase flow and reaction kinetics describing ozone decay, hydroxyl radical (•OH) generation, and organic oxidation was developed to simulate the performance of continuous flow ozonation reactors. Formate was selected as the target organic in this study due to its well-understood oxidation pathway. Simulation results revealed that the dissolved ozone concentration in the reactor is controlled by rates of O3(g) interphase transfer and ozone self-decay. Simulations of the effect of various operating conditions showed that the reaction stoichiometric constraints between formate and ozone were reached; however, complete utilization of gas phase ozone was hard to achieve due to the low ozone interphase mass transfer rate. Increasing the O3(g) concentration leads to an increase in the formate removal rate by ∼5% due to an enhancement in the rate of O3(g) interphase mass transfer. The CFD model adequately describes the mass transfer occurring in the two-phase flow system and confirms that O3(g) interphase mass transfer is the rate-limiting step in contaminant degradation. The model can be used to optimize the ozone reactor design for improved contaminant degradation and ozonation efficiency.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Hidrodinâmica , Cinética , Oxirredução , Ozônio/análise , Poluentes Químicos da Água/análise , Purificação da Água/métodos
19.
Huan Jing Ke Xue ; 43(2): 696-706, 2022 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-35075843

RESUMO

In June 2020, an observation experiment of O3 and its precursors was carried out in Linyi City, Shandong Province. Based on the observation data and MCM photochemical model simulation, the formation mechanism and control mechanism of an ozone pollution case in mid-June were analyzed. The study found that, despite the high precipitation during the observation period, ozone concentrations rapidly accumulated and exceeded the limits once the weather cleared, with the 1-h average and 8-h φ (O3) exceeding the national ambient air quality standards on 10 days (32% in frequency)and 14 days (45%), respectively. The diurnal variation in O3 concentration was unimodal and accompanied by the afternoon peak at 16:00. MCM simulation results showed that the daily net reaction rate of O3 was 20×10-9 h-1, and HO2·+NO and RO2·(except CH3O2·)+NO contributed 49.0%-51.1% and 37.3%-40.2% of O3 generation, respectively. The contribution of the·OH+NO2 reaction to the total consumption of O3 was 35.1%-57.4%. The results of VOCs reactivity, relative incremental reactivity (RIR), and the EKMA curve method showed that the generation of O3 was more sensitive to alkenes (mainly trans-2-pentene and trans-2-butene)and aromatics (mainly m/p-xylene and toluene)but was negatively sensitive to NOx. In other words, the reduction in VOCs concentration would lead to the decrease in O3 concentration, whereas the reduction in NOx concentration would lead to the increase in O3 concentration. PMF source analysis results showed that volatile sources used by solvents and vehicle exhaust emissions contributed significantly to the above key precursor VOC species. Considering the titration effect of NO from vehicle exhaust emissions on ozone, controlling the use of volatile sources of solvents can realize the control of O3 pollution accurately and efficiently.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , China , Monitoramento Ambiental , Análise Fatorial , Ozônio/análise , Compostos Orgânicos Voláteis/análise
20.
Foods ; 10(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209239

RESUMO

This study was primarily focused on the supercritical fluid extraction (SFE) of cherry seed oil and the optimization of the process using sequential extraction kinetics modeling and artificial neural networks (ANN). The SFE study was organized according to Box-Behnken design of experiment, with additional runs. Pressure, temperature and flow rate were chosen as independent variables. Five well known empirical kinetic models and three mass-transfer kinetics models based on the Sovová's solution of SFE equations were successfully applied for kinetics modeling. The developed mass-transfer models exhibited better fit of experimental data, according to the calculated statistical tests (R2, SSE and AARD). The initial slope of the SFE curve was evaluated as an output variable in the ANN optimization. The obtained results suggested that it is advisable to lead SFE process at an increased pressure and CO2 flow rate with lower temperature and particle size values to reach a maximal initial slope.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...